
SRI AKILANDESWARI WOMEN’S COLLEGE, WANDIWASH

INTRODUCTION TO JAVA PROGRAMMING
Class: II. B. Sc Computer Science

Prepared by

C. BALASUBRAMANIAN,

Assistant Professor, Dept of Computer Science

SWAMY ABEDHANADHA EDUCATIONAL TRUST, WANDIWASH

Course Objectives

 On completing the course, you will understand

◦ Create, compile, and run Java programs

◦ Primitive data types

◦ Java control flow

◦ Methods

◦ Arrays (for teaching Java in two semesters, this could be the end)

◦ Object-oriented programming

◦ Core Java classes (Swing, exception, internationalization,

multithreading, multimedia, I/O, networking, Java Collections

Framework)

2

Course Objectives

◦ Write simple programs using primitive data
types, control statements, methods, and arrays.

◦ Create and use methods

◦ Develop a GUI interface and Java applets

◦ Write interesting programs

◦ Establish a firm foundation on Java concepts

3

Java programming

Fundamentals of Programming

◦ Introduction to Java

◦ Primitive Data Types and Operations

◦ Control Statements

◦ Methods

◦ Arrays

4

Java programming

 Object-Oriented Programming

◦ Objects and Classes

◦ Strings

◦ Class Inheritance and Interfaces

5

Java programming
 GUI Programming

◦ Getting Started with GUI Programming

◦ Creating User Interfaces

◦ Applets and Advanced GUI

6

Java programming
Developing Comprehensive Projects

◦ Exception Handling

◦ Internationalization

◦ Multithreading

◦ Multimedia

◦ Input and Output

◦ Networking

◦ Java Data Structures

7

Introduction to Java

 What Is Java?

 Getting Started With Java Programming

◦ Create, Compile and Running a Java Application

8

What Is Java?

 History

 Characteristics of Java

9

History

 James Gosling and Sun Microsystems

 Oak

 Java, May 20, 1995, Sun World

 HotJava

◦ The first Java-enabled Web browser

 JDK Evolutions

 J2SE, J2ME, and J2EE

10

Characteristics of Java

 Java is simple

 Java is object-oriented

 Java is distributed

 Java is interpreted

 Java is robust

 Java is secure

 Java is architecture-neutral

 Java is portable

 Java’s performance

 Java is multithreaded

 Java is dynamic

11

JDK Versions

 JDK 1.02 (1995)

 JDK 1.1 (1996)

 Java 2 SDK v 1.2 (a.k.a JDK 1.2, 1998)

 Java 2 SDK v 1.3 (a.k.a JDK 1.3, 2000)

 Java 2 SDK v 1.4 (a.k.a JDK 1.4, 2002)

12

JDK Editions

 Java Standard Edition (J2SE)
◦ J2SE can be used to develop client-side standalone

applications or applets.

 Java Enterprise Edition (J2EE)
◦ J2EE can be used to develop server-side applications

such as Java servlets and Java ServerPages.

 Java Micro Edition (J2ME).
◦ J2ME can be used to develop applications for mobile

devices such as cell phones.

13

Getting Started with Java

Programming

 A Simple Java Application

 Compiling Programs

 Executing Applications

14

Keying a java program

 Always type the java programs in notepad or
any other editors

 Since java is case sensitive, type in upper /
lower case letters as prescribed by jdk

 After completion of keying the java program,
save your program with extension .java

 Without the .java as extension, the java
program will not be compiled.

15

A Simple java Program

Example 1.1
//This program prints “A TRIAL JAVA PROGRAM”

public class trial{

public static void main(String[] args) {

System.out.println(“ A TRIAL JAVA

PROGRAM");

}

}

16

Compiling and Executing Programs

 On command line

 To compile a java program, type
javac filename.java

 To execute a java program, type
java filename

17

Example

javac trial.java

java trial

output:...

A TRIAL JAVA PROGRAM

19

contents of a Java Program

 Comments

 Package

 Reserved words

 Modifiers

 Statements

 Blocks

 Classes

 Methods

 The main method

20

Comments

In Java, comments are preceded

by two slashes (//) in a line,

or enclosed between /* and */

in one or multiple lines. When

the compiler sees //, it

ignores all text after // in

the same line. When it sees /*,

it scans for the next */ and

ignores any text between /* and

*/.
21

Reserved Words

Reserved words or keywords

are words that have a specific

meaning to the compiler and

cannot be used for other

purposes in the program. For

example, when the compiler sees

the word class, it understands

that the word after class is the

name for the class. Other

reserved words are public,

static and void. 22

Modifiers

Java uses certain reserved words called
modifiers that specify the properties of the
data, methods, and classes and how they
can be used. Examples of modifiers are
public and static. Other modifiers are
private, final, abstract, and protected. A
public datum, method, or class can be
accessed by other programs. A private
datum or method cannot be accessed by
other programs.

23

Statements

A statement represents an

action or a sequence of

actions. The statement

System.out.println(" A TRIAL

JAVA PROGRAM") in the program

is a statement to display the

greeting " A TRIAL JAVA

PROGRAM”

Every statement in Java ends

with a semicolon (;).
24

Blocks

25

A pair of braces in a program

forms a block that groups

components of a program.

public class Test {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

Class block

Method block

Class

The class is the essential Java

construct. A class is a template

or blueprint for objects.

To program in Java, you must

understand classes and be able

to write and use them.

26

Methods
What is System.out.println? It is a method: a
collection of statements that performs a
sequence of operations to display a message
on the console. It can be used even without
fully understanding the details of how it works.
It is used by invoking a statement with a string
argument. The string argument is enclosed
within parentheses. In this case, the argument
is " A TRIAL JAVA PROGRAM" You can call
the same println method with a different
argument to print a different message.

27

main Method
The main method provides the
control of program flow. The
Java interpreter executes the
application by invoking the main
method.

The main method looks like this:

public static void main(String[]
args) {

// Statements;

} 28

The exit Method

Use Exit to terminate the program and stop all
threads.

NOTE: When your program starts, a thread is
spawned to run the program. When the
showMessageDialog is invoked, a separate
thread is spawned to run this method. The
thread is not terminated even if you close the
dialog box. To terminate the thread, you have to
invoke the exit method.

29

Data types in java

primitive and non primitive data types:

Primitive data types [predefined in compiler]

int

long

float

double

char

boolean

30

Int – an example

 int: Used to declare a numeric quantity
without a decimal point.
Default size: 4 byte, Default value: 0
Example:

class JavaExample

{ public static void main(String[] args)

{

int num; num = 150;

System.out.println(num);

}

}

Output:

 150

31

Floating point Literals

 Floating-point Literals are also called as

real constants. The Floating Point contains

decimal points and can contain exponents.

They are used to represent values that

will have a fractional part and can be

represented in two forms – fractional

form and exponent form.

32

Float - example

 float: Sufficient for holding 6 to 7 decimal
digits size: 4 bytes

class JavaExample

{

public static void main(String[] args)

{

float num = 19.98;

System.out.println(num);

}

}

Output:

 19.98

33

Fractional and exponent form

 in the fractional form, the number
contains integer and fractional part. A dot
(.) is used to separate integer part and
fractional part.

 Example: float x = 2.7;

 In the exponential form, the fractional
number contains constants a mantissa and
exponent.

 Example: 23.46e3 = 23.46 x 10^3

34

Double - example

 double: Sufficient for holding 15 decimal digits
size: 8 bytes
Example:

class JavaExample

{

public static void main(String[] args)

{ double num = -42937737.9 ;

System.out.println(num);

}

}

Output:

-4.29377379E7

35

Character Literals

 Character Literals are specified as single

character enclosed in pair of single

quotation marks.

 Example

 char a = ‘good morning’;

36

Char - example

 char: holds characters.

size: 2 bytes
class JavaExample

{

public static void main(String[] args)

{

char ch = 'Z';

System.out.println(ch);

}

}

Output:

Z
37

String Literals

 String Literals are treated as an array of

char. By default, the compiler adds a

special character called the ‘null character’

(‘\0’) at the end of the string to mark the

end of the string.

 Example:

 String str = “good morning”;

38

Boolean literals

 There are two Boolean literals

 true

 false

39

Boolean - example
 boolean: holds value either true of false.
class JavaExample

{

public static void main(String[] args)

{

boolean b = false;

System.out.println(b);

}

}

Output:

false

40

Non-primitive data types

 There are four types of non-primitive data:

 array: It can store any type of data

 string: used to store consecutive characters

 class: Class is used to create objects. It may have
different pieces of data into a single object.

 interface: An interface is like a dashboard or
control panel for a class.

41

Operator in Java
1) Basic Arithmetic Operators

2) Assignment Operators

3) Increment and decrement Operators

4) Logical Operators

5) Comparison (relational) operators

6) Bitwise Operators

7) Ternary Operator

42

Arithmetic

Operators
Basic arithmetic operators are: +, -, *, /, %

+ is for addition.

– is for subtraction.

* is for multiplication.

/ is for division.

% is for modulo.

43

public class ArithmeticOperatorDemo

{ public static void main(String args[])

{ int num1 = 100; int num2 = 20;

System.out.println("num1 + num2: " + (num1 + num2));

System.out.println("num1 - num2: " + (num1 - num2));

System.out.println("num1 * num2: " + (num1 * num2));

System.out.println("num1 / num2: " + (num1 / num2));

System.out.println("num1 % num2: " + (num1 % num2));

}

}

Output:

 num1 + num2: 120

 num1 - num2: 80

 num1 * num2: 2000

 num1 / num2: 5

 num1 % num2: 0 44

Assignment Operators

 Assignments operators in java are:

=, +=, -=, *=, /=, %=

num2 = num1

num2+=num1 is equal to num2 = num2+num1

num2-=num1 is equal to num2 = num2-num1

num2*=num1 is equal to num2 = num2*num1

num2/=num1 is equal to num2 = num2/num1

num2%=num1 is equal to num2 = num2%num1

45

public class AssignmentOperatorDemo

{

public static void main(String args[])

{ int num1 = 10; int num2 = 20;

num2 = num1;

System.out.println("= Output: "+num2); num2 += num1;
System.out.println("+= Output: "+num2); num2 -= num1;
System.out.println("-= Output: "+num2); num2 *= num1;
System.out.println("*= Output: "+num2); num2 /= num1;
System.out.println("/= Output: "+num2); num2 %= num1;
System.out.println("%= Output: "+num2);

}

}

Output:

= Output: 10 += Output: 20 -= Output: 10
*= Output: 100 /= Output: 10 %= Output: 0

46

increment and decrement

Operators

 ++ and —

num++ is equivalent to num=num+1;

num–- is equivalent to num=num-1;

47

public class AutoOperatorDemo

{ public static void main(String args[])

{ int num1=100;

int num2=200;

num1++; num2--;

System.out.println("num1++ is: "+num1);

System.out.println("num2-- is: "+num2);

}

}

Output:

num1++ is: 101 num2-- is: 199

48

Logical Operators

 Logical Operators are used with binary

variables. They are mainly used in

conditional statements and loops for

evaluating a condition.

 Logical operators in java are:

 && -> and

 || -> or

 ! -> not

49

public class LogicalOperatorDemo

{

public static void main(String args[])

{

boolean b1 = true;

boolean b2 = false;

System.out.println("b1 && b2: " + (b1&&b2));

System.out.println("b1 ||b2: " + (b1||b2));

System.out.println("!(b1 && b2): " + !(b1&&b2));

}

}

 Output:

b1 && b2: false

b1 || b2: true

!(b1 && b2): true
50

Relational operators

 We have six relational operators in Java:

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

51

public class RelationalOperatorDemo

{ public static void main(String args[])

{ int num1 = 10;

int num2 = 50;

if (num1==num2)

{ System.out.println("num1 and num2 are equal");

} else

{ System.out.println("num1 and num2 are not equal");}

}

}

 Output:

num1 and num2 are not equal

52

Bitwise operators

53

Ternary Operator

 This operator evaluates a boolean expression and
assign the value based on the result.
Syntax:

 variable num1 = (expression) ? value if true : value if false

 If the expression results true then the first value before
the colon (:) is assigned to the variable num1 else the
second value is assigned to the num1.

54

public class TernaryOperatorDemo

{

public static void main(String args[])

{

int num1, num2; num1 = 25;

num2 = (num1 == 10) ? 100: 200;

System.out.println("num2: "+num2);

num2 = (num1 == 25) ? 100: 200;

System.out.println("num2: "+num2);

}

}

Output:

num2: 200

num2: 100
55

Java Control Statements

a) if statement

b) nested if statement

c) if-else statement

d) if-else-if statement

56

If statement

 If statement consists a condition, followed

by statement or a set of statements as

shown below:

 if(condition){ Statement(s); }

57

public class IfStatementExample

{ public static void main(String args[])

{ int num=70;

if(num < 100)

System.out.println("number is less than 100");

}

}

Output:

number is less than 100

58

Nested if statement in Java

 When there is an if statement inside another if
statement then it is called the nested if
statement.
The structure of nested if looks like this:

if(condition_1)

{ Statement1(s);

if(condition_2)

{ Statement2(s);

}

}

59

public class NestedIfExample

{ public static void main(String args[])

{ int num=70;

if(num < 100)

{ System.out.println("number is less than 100");

if(num > 50)

{ System.out.println("number is greater than 50");

}

}

}

}

Output:

number is less than 100

number is greater than 50

60

If else statement in Java

 This is how an if-else statement looks:

if(condition)

{ Statement(s); }

else

{ Statement(s); }

61

public class IfElseExample

{ public static void main(String args[])

{ int num=120;

if(num < 50)

{ System.out.println("num is less than 50"); }

else

{ System.out.println("num is greater than or equal 50");

}

}

}

Output:

num is greater than or equal 50

62

if-else-if Statement
 if-else-if statement is used when we need to check multiple

conditions. In this statement we have only one “if” and one “else”,

however we can have multiple “else if”. It is also known as if else if

ladder.

if(condition_1)

{ /*if condition_1 is true execute this*/ statement(s); }

else if(condition_2)

{ /* execute this if condition_1 is not met and * condition_2 is met */

statement(s); }

else if(condition_3) { /* execute this if condition_1 & condition_2 are *

not met and condition_3 is met */ statement(s); } . . .

else { /* if none of the condition is true * then these statements gets

executed */ statement(s); }

63

public class IfElseIfExample

{ public static void main(String args[])

{ int num=1234;

if(num <100 && num>=1)

{ System.out.println("Its a two digit number"); }

else if(num <1000 && num>=100)

{ System.out.println("Its a three digit number"); }

else if(num <10000 && num>=1000)

{ System.out.println("Its a four digit number"); }

else if(num <100000 && num>=10000)

{ System.out.println("Its a five digit number"); }

else { System.out.println("number is not between 1 & 99999"); } } }

Output:

Its a four digit number

64

Switch case statement

 it is used when we have number of choices and we

may need to perform a different task for each

choice.

 The syntax of Switch case statement

switch (variable or an integer expression)

{ case constant: //Java code ;

case constant: //Java code ;

default: //Java code ;

}
65

public class SwitchCaseExample1

{ public static void main(String args[])

{ int num=2;

switch(num+2)

{ case 1: System.out.println("Case1: Value is: "+num);

case 2: System.out.println("Case2: Value is: "+num);

case 3: System.out.println("Case3: Value is: "+num);

default: System.out.println("Default: Value is: "+num);

}

}

}

Output:

Default: Value is: 2

66

Example with break statement
public class SwitchCaseExample2

{ public static void main(String args[])

{ int i=2;

switch(i)

{ case 1: System.out.println(“JAVA "); break;

case 2: System.out.println("C++"); break;

case 3: System.out.println(“DBMS"); break;

case 4: System.out.println(“DAA"); break;

default: System.out.println("Default ");

}

}

}
67

For loop in Java

Syntax of for loop:
for(initial;condition ; incr/decr)
{

statement(s);
}

68

Flow of Execution of the for Loop

69

Example of Simple For loop

class ForLoopExample

{

public static void main(String args[])

{

for(int i=10; i>1; i--)

{

System.out.println("The value of i is: "+i); }

}

}

70

OUTPUT

The value of i is: 10
The value of i is: 9
The value of i is: 8
The value of i is: 7
The value of i is: 6
The value of i is: 5
The value of i is: 4
The value of i is: 3
The value of i is: 2

71

Infinite for loop

class ForLoopExample2 {

public static void main(String args[])

{

for(int i=1; i>=1; i++)

{

System.out.println("The value of i is: "+i); }

}

}

72

For loop example to iterate an array:

class ForLoopExample3

{

public static void main(String args[])

{ int arr[]={2,11,45,9};

for(int i=0; i<arr.length; i++){

System.out.println(arr[i]);

}

}

}

73

Enhanced For loop

class ForLoopExample3 {

public static void main(String args[]){

int arr[]={2,11,45,9};

for (int num : arr) {

System.out.println(num);

}

}

}

Output:
2

11

45

9
74

NESTED FOR LOOP

 A for loop within another for loop is

called nested for loop.

 The inner most for loop will be executed

first and the outer loop next.

 Any number of for loops can be nested

wherein none of the loops get crossed

75

Sample nested for loop
class ForLoopExample

{

public static void main(String args[])

{

for(int i=10; i>1; i--)

for (int j-5;j<=1;j--)

{

System.out.println("The value of I and J is: "+i +j);

}

}

}

76

While loop in Java

 In while loop, condition is evaluated

first and if it returns true then the

statements inside while loop execute.

When condition returns false, the

control comes out of loop and jumps

to the next statement after while loop.

77

Flow of Execution of WHILE Loop

78

Simple while loop example

class WhileLoopExample

{

public static void main(String args[])

{

int i=10;

while(i>1)

{

System.out.println(i);

i--;

}

}

}

79

Infinite while loop
class WhileLoopExample2

{

public static void main(String args[])

{

int i=10;

while(i>1)

{

System.out.println(i);

i++;

}

}

}

80

Iterating array using while loop
class WhileLoopExample3 {

public static void main(String args[]){

int arr[]={2,11,45,9};

int i=0;

while(i<4){

System.out.println(arr[i]);

i++;

} } }

Output:

2

11

45

9
81

do-while loop

 In while loop, condition is evaluated

before the execution of loop’s body but in

do-while loop condition is evaluated after

the execution of loop’s body

82

Syntax of do-while loop

do

{

statement(s);

} while(condition);

83

do-while loop example

class DoWhileLoopExample {

public static void main(String args[]){

int i=10;

do{

System.out.println(i);

i--;

}while(i>1);

}

}

Output:

10 9 8 7 6 5 4 3 2

84

Output:
10 9 8 7 6 5 4 3 2

Array using do while loop

class DoWhileLoopExample2 {

public static void main(String args[]){

int arr[]={2,11,45,9};

//i starts with 0 as array index starts with 0

int i=0;

do{

System.out.println(arr[i]);

i++;

}while(i<4);

}}

Output:

2 11 45 9

85

Continue Statement

 Continue statement is mostly used inside loops.

Whenever it is encountered inside a loop, control

directly jumps to the beginning of the loop for next

iteration, skipping the execution of statements

inside loop’s body for the current iteration. This is

particularly useful when you want to continue the

loop but do not want the rest of the

statements(after continue statement) in loop body

to execute for that particular iteration.

86

Syntax

continue word followed by semi colon

.

continue;

87

continue statement inside for loop

public class ContinueExample {

public static void main(String args[]){

for (int j=0; j<=6; j++)

{

if (j==4)

{

continue;

}

System.out.print(j+" ");

}

}

}

Output:

0 1 2 3 5 6 88

Output:
0 1 2 3 5 6

Use of continue in While loop
public class ContinueExample2 {

public static void main(String args[]){

int counter=10;

while (counter >=0)

{

if (counter==7)

{

counter--;

continue;

}

System.out.print(counter+" ");

counter--;

}

}

}

Output: 10 9 8 6 5 4 3 2 1 0

89

Break statement

 a) Whenever a break statement is encountered

inside a loop, the control directly comes out of loop

and the loop gets terminated for rest of the

iterations. It is used along with if statement,

 It is also used in switch case control. Generally all

cases in switch case are followed by a break

statement so that whenever the program control

jumps to a case, it doesn’t execute subsequent

cases.

90

https://beginnersbook.com/2017/08/java-switch-case/

Class

 A class can be defined as a template/blueprint that

describes the behavior/state that the object of its

type support

91

Class sample program
public class Dog

{

String breed;

int age;

String color;

void barking() { }

void hungry() { }

void sleeping() { }

}

92

Object

 Objects have states and behaviors.

 Example: A dog has states - color, name, breed as

well as behaviors – wagging the tail, barking, eating.

 An object is an instance of a class.

93

Contents of a class
 Local variables −Variables defined inside methods, constructors or

blocks are called local variables. The variable will be declared and initialized

within the method and the variable will be destroyed when the method

has completed.

 Instance variables − Instance variables are variables within a class but

outside any method. These variables are initialized when the class is

instantiated. Instance variables can be accessed from inside any method,

constructor or blocks of that particular class.

 Class variables − Class variables are variables declared within a class,

outside any method, with the static keyword.

 A class can have any number of methods to access the value of various

kinds of methods. In the above example, barking(), hungry() and sleeping()

are methods.

94

Three steps for creating an object

from a class

 Declaration −A variable declaration

with a variable name with an object type.

 Instantiation −The 'new' keyword is

used to create the object.

 Initialization −The 'new' keyw ord is

followed by a call to a constructor. This

call initializes the new object.

95

Constructors

 A constructor in Java is a special method that is

used to initialize objects. The constructor is called

when an object of a class is created.

 Constructors have the same name as the class or

struct, and they usually initialize the data members

of the new object. In the following example, a class

named Taxi is defined by using a simple constructor

96

Characteristics of constructor

 They should be declared in the public section.

 They are invoked automatically when the objects
are created.

 They do not have return (data type) type not even
void and there for they cannot return any values.

 They can not be inherited, the a derived class can
call the base class constructor.

97

creating an object
public class Puppy {

public Puppy(String name) {

// This constructor has one parameter, name.

System.out.println("Passed Name is :" + name);

}

public static void main(String []args) {

// Following statement would create an object myPuppy

Puppy myPuppy = new Puppy("tommy");

}

}

98

Source File Declaration Rules
 There can be only one public class per source file.

 A source file can have multiple non-public classes.

 The public class name should be the name of the source file as well which

should be appended by .java at the end. For example: the class name

is public class Employee{} then the source file should be as Employee.java.

 If the class is defined inside a package, then the package statement should

be the first statement in the source file.

 If import statements are present, then they must be written between the

package statement and the class declaration. If there are no package

statements, then the import statement should be the first line in the source

file.

 Import and package statements will imply to all the classes present in the

source file. It is not possible to declare different import and/or package

statements to different classes in the source file.

99

Packages and import

 A package in Java is used to group related classes. Think
of it as a folder in a file directory. We use packages
to avoid name conflicts, and to write a better
maintainable code.

 Packages are divided into two categories:

 Built-in Packages (packages from the Java API)

 User-defined Packages (create your own packages)

 Syntax

 import package.name.Class; // Import a single class
import package.name.*; // Import the whole package

100

Import a Class

 If you find a class you want to use, for example,
the Scanner class, which is used to get user input, write
the following code:

 Example

 import java.util.Scanner;

 In the example above, java.util is a package, while Scanner is
a class of the java.util package.

 To use the Scanner class, create an object of the class and
use any of the available methods found in the Scanner class
documentation. In our example, we will use
the nextLine() method, which is used to read a complete
line:

101

 Example

Using the Scanner class to get user input:

import java.util.Scanner;

class MyClass

{ public static void main(String[] args)

{ Scanner myObj = new Scanner(System.in);

System.out.println("Enter username");

String userName = myObj.nextLine();

System.out.println("Username is: " + userName);

} }

102

User-defined Packages

 To create your own package, you need to
understand that Java uses a file system directory to
store them. Just like folders on your computer

package mypack;

class MyPackageClass

{ public static void main(String[] args)

{ System.out.println("This is my package!");

}

}

103

Static class

 static members are those which belongs to the

class and you can access these members without

instantiating the class.

 The static keyword can be used with methods,

fields, classes (inner/nested), blocks.

 Static Methods −You can create a static method

by using the keyword static. Static methods can

access only static fields, methods.

104

Example
public class MyClass

{ public static void sample()

{ System.out.println("Hello"); }

public static void main(String args[])

{ MyClass.sample();

} }

Output

Hello

105

 Static Fields −You can create a static field by using the

keyword static. The static fields have the same value in all the

instances of the class. These are created and initialized when the

class is loaded for the first time. Just like static methods you can

access static fields using the class name

 Example

public class MyClass

{ public static int data = 20;

public static void main(String args[])

{ System.out.println(MyClass.data); }

}

Output 20

106

Overloading in java

 overload means that there are multiple versions of

a constructor or method. They will each have a

different number of arguments, or values, that

they take in to work with.

107

Example of an overload
public Conversion

{

public double conversionRate;

public double modifier;

// constructor here:

public Conversion(double c) {

conversionRate = c;

}

//another constructor: the overload

public Conversion(double c, double m) {

conversionRate = c;

modifier = .00587;

}

}

108

Different ways to overload the method

 There are two ways to overload the

method

 By changing number of arguments

 By changing the data type

109

Overloading: changing no. of arguments

class Adder{

static int add(int a,int b){return a+b;}

static int add(int a,int b,int c){return a+b+c;}

}

class TestOverloading1{

public static void main(String[] args){

System.out.println(Adder.add(11,11));

System.out.println(Adder.add(11,11,11));

}}

Output: 22 33

110

Overloading: changing data type of arguments

class Adder{

static int add(int a, int b){return a+b;}

static double add(double a, double b){return a+b;}}

class TestOverloading2{

public static void main(String[] args){

System.out.println(Adder.add(11,11));

System.out.println(Adder.add(12.3,12.6));

}}

Test it Now

Output 22 24.9

111

https://www.javatpoint.com/opr/test.jsp?filename=TestOverloading2

this keyword in java
 In java, this is a reference variable that refers to the

current object.

 Usages of java this keyword

 This is used to refer current class instance variable.

 this can be used to invoke current class method

 this can be used to invoke current class constructor.

 this can be passed as argument in method call.

 this can be passed as argument in constructor call.

 this can be used to return the current class instance from the
method.

112

problem without this keyword

class Student{

int rollno; String name; float fee;

Student(int rollno,String name,float fee){

rollno=rollno; name=name; fee=fee; }

void display(){System.out.println(rollno+" "+name+" "+fee);} }

classTestThis1{

public static void main(String args[]){

Student s1=new Student(111,"ankit",5000f);

Student s2=new Student(112,"sumit",6000f);

s1.display();

s2.display();

}}

 Output: null 0.0 0 null 0.0

113

Solution of the above problem by this keyword

class Student{

int rollno; String name; float fee;

Student(int rollno,String name,float fee){

this.rollno=rollno; this.name=name; this.fee=fee; }

void display(){System.out.println(rollno+" "+name+" "+fee);} }

classTestThis2{

public static void main(String args[]){

Student s1=new Student(111,"ankit",5000f);

Student s2=new Student(112,"sumit",6000f);

s1.display();

s2.display();

}}

Output:

111 ankit 5000 112 sumit 6000
114

Java Enumerator (enum)

 The Enum in Java is a data type which contains a fixed set of

constants.

 It can be used for days of the week (SUNDAY, MONDAY, TUESDAY,

WEDNESDAY, THURSDAY, FRIDAY, and SATURDAY) , directions

(NORTH, SOUTH, EAST, and WEST), season (SPRING, SUMMER,

WINTER, and AUTUMN or FALL), colors (RED, YELLOW, BLUE,

GREEN, WHITE, and BLACK) etc. According to the Java naming

conventions, we should have all constants in capital letters. So, we

have enum constants in capital letters.

 Java Enums can be thought of as classes which have a fixed set of

constants (a variable that does not change). The Java enum constants

are static and final implicitly.

115

Points to remember for Java Enum

 Enum improves type safety

 Enum can be easily used in switch

 Enum can be traversed

 Enum can have fields, constructors and methods

 Enum may implement many interfaces but
cannot extend any class because it internally
extends Enum class

116

Simple Example of Java Enum

class EnumExample1{

//defining the enum inside the class

public enum Season { WINTER, SPRING, SUMMER, FALL }

//main method

public static void main(String[] args) {

//traversing the enum

for (Season s : Season.values())

System.out.println(s);

}}

Output

WINTER SPRING SUMMER FALL

117

What is the purpose of the values() method in the enum?

The Java compiler internally adds the values() method when it creates

an enum. The values() method returns an array containing all the

values of the enum.

What is the purpose of the valueOf() method in the enum?

The Java compiler internally adds the valueOf() method when it creates

an enum. The valueOf() method returns the value of given constant

enum.

What is the purpose of the ordinal() method in the enum?

The Java compiler internally adds the ordinal() method when it creates

an enum. The ordinal() method returns the index of the enum value.

118

Defining Java Enum

 The enum can be defined within or outside the class

because it is similar to a class. The semicolon (;) at the end

of the enum constants are optional. For example:

 enum Season { WINTER, SPRING, SUMMER, FALL }

Or,

 enum Season { WINTER, SPRING, SUMMER, FALL; }

 Both the definitions of Java enum are the same.

119

Example of specifying initial value to the

enum constants

class EnumExample4{

enum Season{

WINTER(5), SPRING(10), SUMMER(15), FALL(20);

private int value;

private Season(int value){

this.value=value;

} }

public static void main(String args[]){

for (Season s : Season.values())

System.out.println(s+" "+s.value);

}}

Output WINTER 5 SPRING 10 SUMMER 15 FALL 20

120

Java Garbage Collection

 In java, garbage means unreferenced objects.

 Garbage Collection is process of reclaiming the
runtime unused memory automatically. In other
words, it is a way to destroy the unused objects.

 To do so, we were using free() function in C language
and delete() in C++. But, in java it is performed
automatically. So, java provides better memory
management.

121

 Advantage of Garbage Collection

 It makes java memory efficient because garbage collector removes

the unreferenced objects from heap memory.

 It is automatically done by the garbage collector(a part of JVM) so

we don't need to make extra efforts.

 How can an object be unreferenced?

 By nulling the reference

 By assigning a reference to another

 By anonymous object etc.

122

1) By nulling a reference:

Employee e=new Employee(); e=null;

2) By assigning a reference to another:

Employee e1=new Employee();

Employee e2=new Employee();

e1=e2;

3) By anonymous object:

new Employee();

123

Simple Example of garbage

collection in java

public class TestGarbage1{

public void finalize(){

System.out.println(“object is garbage collected”)

public static void main(String args[]){

TestGarbage1 s1=new TestGarbage1();

TestGarbage1 s2=new TestGarbage1();

s1=null; s2=null; System.gc();

} }

object is garbage collected object is garbage collected

124

Unit 1 question bank
 PART A

 List any four features of java

 What are the tools in JDK ?

 What are the basic concepts of oops?

 What is an object ?

 What are the contents of a java program?

 List out the API packages.

 What are the data types in java?

 What are the types of primitive / built in data types?

 What is a variable? Give example

 What is a literal? Give example

 What are the three types of comment lines in java?

 What are the keyboard input methods in java?

 What are the types of control statements

 What are the visibility modifiers in java?

125

 what is a constructor?

 Define package

 What is meant by garbage collection?



126

 PART B & C

 Explain the features of java

 Describe the concepts of oops

 Describe the structure of java program

 List out the API packages and describe all.

 Write the classification of data types in java

 Discuss about the rules for naming a variable

 Classify the literals and explain each

 Describe briefly the operators in java

 Explain the keyboard input methods in java?

 Describe the control statements in java.

 Explain the conditional statements.

 Explain the looping structures

 Explain the call by value and call by reference.

 Explain the concepts of constructor

 Define package and explain the classifications of package

127

UNIT 1 COMPLETED

128

